
spcl.inf.ethz.ch

@spcl_eth

TORSTEN HOEFLER

Interconnects and Architectural Impacts

(on performance, of course J)

Argonne Training Program on Extreme-Scale Computing (ATPESC 2014)

August 4th 2014, St. Charles, IL, USA

spcl.inf.ethz.ch

@spcl_eth

Á My dream: provably optimal performance (time and energy)

ÁFrom problem to machine code

Á Will demonstrate techniques & insights

ÁAnd obstacles J

Model-based Performance Engineering

2

Design System

Model

Define Problem

Find (close to)

optimal Solution

Implement and

Test

Refine System

Model

spcl.inf.ethz.ch

@spcl_eth

3

State of the Art Performance Modeling

Locality

Computational

Complexity

Input/Output

Complexity

Red/Blue

Pebble Game

Communication-

reducing algorithms

Cache-optimized

algorithms

Detailed (Automated)

Architecture Models

Model-driven

Algorithm Design

spcl.inf.ethz.ch

@spcl_eth

Example: Message Passing, Log(G)P

CACM 1996

Optimal

Solution [1]

Broadcast

Problem

4 [1]: Karp et al.: ñOptimal broadcast and summation in the LogP modelò, SPAA 1993

spcl.inf.ethz.ch

@spcl_eth

Hardware Reality

POWER 7, 8 cores, source: IBM Xeon Phi, 64 cores, source: Intel Interlagos, 8/16 cores, source: AMD

5

spcl.inf.ethz.ch

@spcl_eth

Hardware Reality

POWER 7, 8 cores, source: IBM Xeon Phi, 64 cores, source: Intel Interlagos, 8/16 cores, source: AMD

InfiniBand, sources: Intel, Mellanox BG/Q, Cray Aries, sources: IBM, Cray
Kepler GPU, source: NVIDIA

6

spcl.inf.ethz.ch

@spcl_eth

Hardware Reality

POWER 7, 8 cores, source: IBM Xeon Phi, 64 cores, source: Intel Interlagos, 8/16 cores, source: AMD

InfiniBand, sources: Intel, Mellanox BG/Q, Cray Aries, sources: IBM, Cray
Kepler GPU, source: NVIDIA

7

spcl.inf.ethz.ch

@spcl_eth

Á Remember:

ÁWrite Back?

ÁWrite Through?

Á Cache coherence requirements

A memory system is coherent if it guarantees the following:

ÁWrite propagation (updates are eventually visible to all readers)

ÁWrite serialization (writes to the same location must be observed in order)

Everything else: memory model issues (not in this talk, very complex)

8

Caching Strategies (repeat)

spcl.inf.ethz.ch

@spcl_eth

9

Write Through Cache
(initially X=0 in memory)

1. CPU0 reads X from memory
Å loads X=0 into its cache

2. CPU1 reads X from memory
Å loads X=0 into its cache

3. CPU0 writes X=1
Å stores X=1 in its cache
Å stores X=1 in memory

4. CPU1 reads X from its cache
Å loads X=0 from its cache
Incoherent value for X on CPU1

CPU1 may wait for update!

Requires write propagation!

spcl.inf.ethz.ch

@spcl_eth

10

Write Back Cache
(initially X=0 in memory)

1. CPU0 reads X from memory
Å loads X=0 into its cache

2. CPU1 reads X from memory
Å loads X=0 into its cache

3. CPU0 writes X=1
Å stores X=1 in its cache

4. CPU1 writes X =2
Å stores X=2 in its cache

5. CPU1 writes back cache line
Å stores X=2 in in memory

6. CPU0 writes back cache line
Å stores X=1 in memory
Later store X=2 from CPU1 lost

 Requires write serialization!

spcl.inf.ethz.ch

@spcl_eth

Á Assume C99:

Á Two threads:

Áa=b=0 and struct twoint aligned at a 64-Bytes cacheline boundary

ÁThread 0: write a=1

ÁThread 1: write b=1

Á Assume non-coherent write back cache

ÁWhat may end up in main memory?

11

A simple example

struct twoint {

 int a;

 int b;

}

spcl.inf.ethz.ch

@spcl_eth

Á Programmer cannot deal with unpredictable behavior!

Á Cache controller maintains data integrity

ÁAll writes to different locations are visible

Á Snooping

ÁShared bus or (broadcast) network

ÁCache controller ñsnoopsò all transactions

ÁMonitors and changes the state of the cacheôs data

Á Directory-based

ÁRecord information necessary to maintain coherence

ÁE.g., owner and state of a line etc.

12

Cache Coherence Protocol

Fundamental Mechanisms

spcl.inf.ethz.ch

@spcl_eth

Á Problem 1: stale reads

ÁCache 1 holds value that was already modified in cache 2

ÁSolution:

Disallow this state

Invalidate all remote copies before allowing a write to complete

Á Problem 2: lost update

Á Incorrect write back of modified line writes main memory in different order

from the order of the write operations or overwrites neighboring data

ÁSolution:

Disallow more than one modified copy

13

An Engineering Approach: Empirical start

spcl.inf.ethz.ch

@spcl_eth

Á Based on invalidation

ÁBroadcast all coherency traffic (writes to shared lines)

to all caches

ÁEach cache snoops

Invalidate lines written by other CPUs

Signal sharing for cache lines in local cache to other caches

ÁSimple implementation for bus-based systems

ÁWorks at small scale, challenging at large-scale

E.g., Intel Sandy Bridge

Á Based on explicit updates

ÁCentral directory for cache line ownership

ÁLocal write updates copies in remote caches

Can update all CPUs at once

Multiple writes cause multiple updates (more traffic)

ÁScalable but more complex/expensive

E.g., Intel Xeon Phi

 14

Cache Coherence Approaches

Source: Intel

